Test ff for concavity?

ff 2 times differentiable in RR with:

(f'(x))^3+3f'(x)=e^x+cosx+x^3+2x+7

AAxinRR

2 Answers
Jan 16, 2018

f is convex in RR

Explanation:

Solved it i think.

f is 2 times differentiable in RR so f and f' are continuous in RR

We have (f'(x))^3+3f'(x)=e^x+cosx+x^3+2x+7

Differentiating both parts we get

3*(f'(x))^2f''(x)+3f''(x)=e^x-sinx+3x^2+2 <=>

3f''(x)((f'(x))^2+1)=e^x-sinx+3x^2+2

  • f'(x)^2>=0 so f'(x)^2+1>0

<=> f''(x)=(e^x-sinx+3x^2+2)/(3((f'(x))^2+1)>0)

We need the sign of the numerator so we consider a new function

g(x)=e^x-sinx+3x^2+2
, xinRR

g'(x)=e^x-cosx+6x

We notice that g'(0)=e^0-cos0+6*0=1-1+0=0

For x=π => g'(π)=e^π-cosπ+6π=e^π+1+6π>0

For x=-π g'(-π)=e^(-π)-cos(-π)-6π=1/e^π+cosπ-6π=1/e^π-1-6π<0

We finally get this table which shows the monotony of g
enter image source here

Supposed I_1=(-oo,0] and I_2=[0,+oo)
g(I_1)=g((-oo,0])=[g(0),lim_(xrarr-oo)g(x))=[3,+oo)

g(I_2)=g([0,+oo))=[g(0),lim_(xrarr+oo)g(x))=[3,+oo)

because

  • lim_(xrarr-oo)g(x)=lim_(xrarr-oo)(e^x-sinx+3x^2+2)

|sinx|<=1 <=> -1<=-sinx<=1 <=>

e^x+3x^2+2-1<=e^x+3x^2+2-sinx<=e^x+3x^2+2+1 <=>

e^x+3x^2+1<=e^x-sinx+3x^2+2<=e^x+3x^2+3 <=>

e^x+3x^2+1<=g(x)<=e^x+3x^2+3

  • Using the squeeze/sandwich theorem we have

lim_(xrarr-oo)(e^x+3x^2+1)=+oo=lim_(xrarr-oo)(e^x+3x^2+3x)

enter image source here

Therefore, lim_(xrarr-oo)g(x)=+oo

  • lim_(xrarr+oo)g(x)=lim_(xrarr+oo)(e^x-sinx+3x^2+2)

With the same process we end up to

e^x+3x^2+1<=g(x)<=e^x+3x^2+3

However, lim_(xrarr+oo)(e^x+3x^2+1)=+oo=e^x+3x^2+3

Therefore, lim_(xrarr+oo)g(x)=+oo

The range of g will be:

R_g=g(D_g)=g(I_1)uug(I_2)=[3,+oo)

  • 0!inR_g=[3,+oo) so g has no roots in RR
    g is continuous in RR and has no solutions. Therefore, g preserves sign in RR

That means

{(g(x)>0" , "xεRR),(g(x)<0" , "xεRR):}

Thus, g(π)=e^π-sinπ+3π^2+2=e^π+3π^2+2>0

As a result g(x)>0, xinRR

And f''(x)>0 , xinRR

-> f is convex in RR

Jan 16, 2018

See below.

Explanation:

Given y = f(x) the curve curvature radius is given by

rho = (1+(f')^2)^(3/2)/(f'') so given

(f')^3+3f' = e^x + cosx + x^3 + 2 x + 7 we have

3(f')^2f''+3f'' = e^x+3x^3-sinx+2 or

f''(1+(f')^2) = 1/3( e^x+3x^3-sinx+2) or

1/(f''(1+(f')^2))=3/(e^x+3x^3-sinx+2) or

rho = (1+(f')^2)^(3/2)/(f'') = (3(1+(f')^2)^(5/2))/(e^x+3x^3-sinx+2)

now analyzing g(x) = e^x+3x^3-sinx+2 we have

min g(x) = 0 for x in RR so g(x) ge 0 and then the curvature in

rho = (3(1+(f')^2)^(5/2))/(e^x+3x^3-sinx+2) doesn't changes sign so we conclude that f(x) epigraph is convex in RR