The area of a rectangular desktop is 6x^2- 3x -3. The width of the desktop is 2x+1. What is the length of the desktop?

4 Answers
Dec 15, 2016

The length of the desktop is 3(x-1)

Explanation:

Area of the rectangle is A=l*w , where l ,w are length and width of rectangle respectively.

So l=A/w or l = (6x^2-3x-3)/(2x+1) or (3(2x^2-x-1))/(2x+1) or (3(2x^2-2x+x-1))/(2x+1) or (3(2x(x-1)+1(x-1)))/(2x+1) or (3cancel((2x+1))(x-1))/cancel((2x+1)) or 3(x-1)

The length of the desktop is 3(x-1) [Ans]

Dec 15, 2016

Length is (3x-3)

Explanation:

Note that LHS is left hand side and RHS is right hand side

The way the question is worded means we have to have the initial condition of:

(2x+1)(?+?)=6x^2-3x-3 ........................Equation(1)

color(blue)("Consider the "x^2" term:")

We have 2x xx?=6x^2

To end up with x^2 we must have:

2x xx?x=6x^2

To end up with the 6 from 6x^2 we must have:

2x xx3x=6x^2

So we now have:

(2x+1)(3x+?)=6x^2-3x-3.....................Equation(1_a)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)("Consider the constant of "color(red)(-3)" in "6x^3-3xcolor(red)(-3))

We already have 1 in the (2x+1) and 1xx(-3)=-3

This implies that we have:" "(2x+1)(3x-3)

So we need to test:

color(blue)((2x+1))color(green)((3x-3)) = 6x^2-3x-3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)("Consider just the brackets")

Multiply the 2nd brackets by everything in the 1st brackets

color(green)(color(blue)(2x)(3x-3)color(blue)(" "+1)(3x-3))

6x^2-6x" "+color(white)(..)3x-3

6x^2-3x-3 = "LHS of the equation"

So LHS = RHS of the equation, thus the answer is:

"Width "xx" Length"

(2x+1)xx(3x-3)

Dec 15, 2016

3x-3

Explanation:

Area of a rectangle=W*L
6x^2-3x-3 =(2x+1)*L
=(6x^2-3x-3)/(2x+1)
=3(2x^2-x-1)/(2x+1)
=3((2x+1)(x-1))/((2x+1))
cancel out 2x+1
Then length= 3x-3
check
3(x-1)(2x+1)
(3x-3)(2x+1)
6x^2-3x-3=3(x-1)(2x+1)
6x^2-3x-3=6x^2-3x-3

Dec 16, 2016

color(red)("Alternative method - polynomial division")

"Length"= 3x-3

Explanation:

We have: " width"xx"length"=6x^2-3x-3

=>"length "=(6x^2-3x-3)/("width")" "=" "(6x^2-3x-3)/(2x+1)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("The division")

" "color(white)(.)6x^2-3x-3
color(red)(3x)(2x+1)-> ul(6x^2+3x) larr" subtract"
" "0color(white)(.)-6xcolor(white)(.)-3
color(red)(-3)(2x+1)->ul(" "-6xcolor(white)(.)-3) larr" subtract"
" "0color(white)(.)+color(white)(.)0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
=>"length" = color(red)(3x-3) = (6x^2-3x-3)/(2x+1)