The coefficients of #x^2# and #x^3# in the expansion of #(3-2x)^6# are *a* and *b* respectively. Find the values of #a/b# ?

The coefficients of #x^2# and #x^3# in the expansion of #(3-2x)^6# are a and b respectively. Find the values of #a/b# .

1 Answer
Nov 25, 2017

The answer is #=1.125#

Explanation:

The binomial theorem is

#(p+q)^6=((6),(0))p^6+((6),(1))p^5q+((6),(2))p^4q^2+((6),(3))p^3q^3+((6),(4))p^2q^4+((6),(5))pq^5+((6),(6))q^6#

where,

#((n),(k))=(n!)/((n-k)!(k!))#

Here,

we have

#p=3# and #q=-2x#

Therefore,

The coefficients of #x^2# is

#=((6),(2))3^4*(-2x)^2=(6!)/((6-2)!(2!))81*(4)x^2#

#=(6*5)/(1*2)*324x^2#

#a=4860#

The coefficients of #x^3# is

#=((6),(3))3^3*(-2x)^3=(6!)/((6-3)!(3!))27*(-8)x^3#

#=-(6*5*4)/(1*2*3)*27*8x^3#

#b=-4320#

Finally,

#a/b=4860/(-4320)=-1.125#