The balanced equation is
#"H"_2 + "I"_2 ⇌ "2HI"#
Now, we can set up an ICE table.
#color(white)(mmmmmmm)"H"_2 +color(white)(mml) "I"_2 ⇌color(white)(mll) "2HI"#
#"I/mol·L"^"-1": color(white)(ml)1.000color(white)(mm)1.000color(white)(mml)1.000#
#"C/mol·L"^"-1": color(white)(mm)"-"xcolor(white)(mmmll)"-"xcolor(white)(mmml)"+2"xcolor#
#"E/mol·L"^"-1": color(white)(m)"1.000-"xcolor(white)(m)"1.000-"xcolor(white)(m)"1.000+2"x#
#K_text(c) = (["HI"]^2)/(["H"_2]["I"_2]) = (1.000 + 2x)^2/((1.000-x)(1.000-x)) = 54.8#
#(1.000 + 2x)/(1.000-x) = 7.403#
#1.000 + 2x = 7.403 - 7.403x#
#9.403x = 6.403#
#x = 6.403/9.403 = 0.681#
∴ #["H"_2] = ["I"_2] = "0.681 mol/L"#
#["HI"] = "(1.000 + 2×0.681) mol/L = 2.362 mol/L"#
Check:
#(1.000 + 2x)^2/(1.000 -x)^2 = 2.362^2/0.3191^2 = 5.579/ 0.1018= 54.8#
It checks!