The spherical coordinates of (-3, 4,-12) are (ρ,ϴ,Φ). Find tanϴ+tanΦ ?

1 Answer
Jun 21, 2018

Please see the explanation below.

Explanation:

The spherical coordinates (rho, theta, phi)(ρ,θ,ϕ) are related to the rectangular coordinates (x,y,z)(x,y,z) by

{(x=rhocostheta),(y=rhosintheta),(z=rhocosphi):}

Here {(x=-3),(y=4),(z=-12):}

rho=sqrt((-3)^2+(4)^2+(-12)^2)=sqrt(169)=13

tantheta=y/x=4/(-3)=-4/3

cosphi=z/rho=-12/13

tan^2phi+1=1/cos^2phi=169/144

tan^2phi=169/144-1=25/144

tanphi=+-5/12

Therefore,

tantheta+tanphi=-4/3+5/12=-11/12

or

tantheta+tanphi=-4/3-5/12=-21/12