The sum of the series #1/(1*2) - 1/(2*3) + 1/(3*4) - ....# upto infinity is equal to?

1 Answer
Jun 17, 2017

The sum is #=2ln2-1#

Explanation:

The general term of the series is #=(-1)^(n+1)/(n(n+1))#

We perform a decomposition into partial fractions

#1/(n(n+1))=A/n+B/(n+1)#

#=(A(n+1)+Bn)/(n(n+1))#

So,

#1=A(n+1)+Bn#

When #n=0#, #=>#, #1=A#

When #n=-1#, #=>#, #1=-B#

Therefore,

#1/(n(n+1))=1/n-1/(n+1)#

#(-1)^(n+1)/(n(n+1))=(-1)^(n+1)/n-(-1)^(n+1)/(n+1)#

#sum_1^oo(-1)^(n+1)/(n(n+1))=sum_1 ^oo(-1)^(n+1)/n-sum_0^oo(-1)^(n+1)/(n+1)#

#ln(1+x)=sum_1^ ( oo)(-1)^(n+1)/n*x^n#

#sum_1^ ( oo)(-1)^(n+1)/n=ln2#

#sum_0^(oo)(-1)^(n+1)/(n+1)=sum_0^1(-1)^(n+1)/(n+1)-sum_1^oo(-1)^(n)x^(n+1)/(n+1)#

#sum_0^oo(-1)^(n)x^(n+1)/(n+1)=1-ln(1+x)#

#sum_0^ ( oo)(-1)^(n+1)/(n+1)=1-ln2#

#sum_1^oo(-1)^(n+1)/(n(n+1))=ln2-(1-ln2)=2ln2-1#