The value is=?

enter image source here

1 Answer
Mar 15, 2018

Answer is (4).

Explanation:

#y=(x+sqrt(x^2-1))^15+(x-sqrt(x^2-1))^15#

Hence #(dy)/(dx)=15(x+sqrt(x^2-1))^14*(1+(2x)/(2sqrt(x^2-1)))+15(x-sqrt(x^2-1))^14*(1-(2x)/(2sqrt(x^2-1)))#

= #15(x+sqrt(x^2-1))^14*(1+x/sqrt(x^2-1))+15(x-sqrt(x^2-1))^14*(1-x/sqrt(x^2-1))#

= #15(x+sqrt(x^2-1))^14*((sqrt(x^2-1)+x)/sqrt(x^2-1))+15(x-sqrt(x^2-1))^14*((sqrt(x^2-1)-x)/sqrt(x^2-1))#

= #15(x+sqrt(x^2-1))^15/sqrt(x^2-1)-15(x-sqrt(x^2-1))^15/sqrt(x^2-1)#

or #sqrt(x^2-1)/15(dy)/(dx)=(x+sqrt(x^2-1))^15-(x-sqrt(x^2-1))^15#

and similarly we have

#sqrt(x^2-1)/15(d^2y)/(dx^2)+(dy)/(dx)*(2x)/(30sqrt(x^2-1))=15(x+sqrt(x^2-1))^15/sqrt(x^2-1)+15(x-sqrt(x^2-1))^15/sqrt(x^2-1)#

or #(x^2-1)/225(d^2y)/(dx^2)+(dy)/(dx)*x/225=(x+sqrt(x^2-1))^15+(x-sqrt(x^2-1))^15=y#

or #(x^2-1)(d^2y)/(dx^2)+x(dy)/(dx)=225y#

Hence answer is (4).

Additional Information #-# Observe that for #y=(x+sqrt(x^2-1))^n+(x-sqrt(x^2-1))^n#, #(x^2-1)(d^2y)/(dx^2)+x(dy)/(dx)# would be #n^2y#