The vector #vec A# is on a coordinate plane. The plane is then rotated counterclockwise by #phi#. How do I find the components of #vec A# in terms of the components of #vec A# once the plane is rotated?
Original coordinate plane:
#vecA = veci A_x + vecj A_y#
Rotated plane:
#vecA = veci' A_x' + vecj' A_y'#
So,
#veci ' = veci cos phi + vecj sin phi#
#vecj ' = -veci sin phi + vecj cos phi#
#vec A = veci' A_x' + vecj' A_y = vec i(A_x' cos phi - A_y' sin phi) + vec j (A_x' sin phi + A_y' cos phi) #
(I skipped a few steps above.)
#vecA = veci A_x + vecj A_y# , so
#A_x = A_x' cos phi - A_y' sin phi#
#A_y = A_x' sin phi + A_y' cos phi#
However, apparently #A_y = -A_x' sin phi + A_y' cos phi# . I'm not sure where I went wrong?
Original coordinate plane:
Rotated plane:
So,
(I skipped a few steps above.)
#A_x = A_x' cos phi - A_y' sin phi#
#A_y = A_x' sin phi + A_y' cos phi#
However, apparently
1 Answer
see below
Explanation:
The matrix
# R(alpha)=((cos alpha , -sin alpha ), (sin alpha , cos alpha))#
But instead of rotating CCW the plane, rotate CW the vector
IOW, I think your reasoning looks good.