Use the definition of the derivative to find f’ when f(x) =6x^2 +4. No points for any other methods please help??

2 Answers
Jan 30, 2018

f'(x)=12x

Explanation:

According to definition of derivative for f(x),

f'(x)=(df)/(dx)=lim_(deltax->0)(f(x+deltax)-f(x))/(deltax)

Here we have f(x)=6x^2+4, therefore

f(x+deltax)=6(x+deltax)^2+4

and f'(x)=(df)/(dx)=lim_(deltax->0)(6(x+deltax)^2+4-(6x^2+4))/(deltax)

= lim_(deltax->0)(6x^2+12xdeltax+6(deltax)^2+4-6x^2-4)/(deltax)

= lim_(deltax->0)(12xdeltax+6(deltax)^2)/(deltax)

= lim_(deltax->0)12x+6deltax

= 12x

Jan 30, 2018

f'(x) = 12x

Explanation:

For any function f, the derivative f', is given by:

f'(x) = lim_(hrarr0) (f(x+h) - f(x))/h

For f(x) = 6x^2 + 4, this is:

f'(x) = lim_(hrarr0) (6(x+h)^2 + 4 - (6x^2 +4))/h
=lim_(hrarr0) (6x^2 + 12xh +6h^2 +4 - 6x^2 -4)/h
= lim_(hrarr0) (12xh + 6h^2)/h
=lim_(hrarr0)12x + 6h

Now it is just a matter of letting h=0 which leaves:

f'(x) = 12x