Using the limit definition, how do you differentiate f(x)=1-x^2f(x)=1x2?

1 Answer
Nov 3, 2015

If f(x) = 1-x^2f(x)=1x2 then (d f(x))/(dx) = -2xdf(x)dx=2x

Explanation:

The limit definition of the derivative of a function f(x)f(x) is
color(white)("XXX")(d f(x))/(dx) = lim_(hrarr0) (f(x+h)-f(x))/h

If f(x) = 1-x^2
color(white)("XXX")then (by the limit definition)
(d f(x))/(dx)
color(white)("XXX")=lim_(hrarr0) ((1-(x+h)^2)-(1-x^2))/h

color(white)("XXX")= lim_(hrarr0) (1-x^2-2xh-h^2-1+x^2)/h

color(white)("XXX")=lim_(hrarr0)(-2xh-h^2)/h

color(white)("XXX")=lim_(hrarr0) -2x-h

color(white)("XXX")=-2x