Using the limit definition, how do you differentiate f(x)= 3/(x+1)f(x)=3x+1?

1 Answer
Nov 28, 2015

f'(x)=-3/(x+1)^2

Explanation:

The limit definition of the derivative:

f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h

We know that f(x)=3/(x+1), so f(x+h)=3/(x+h+1).

We can plug this in to find that:

f'(x)=lim_(hrarr0)(3/(x+h+1)-3/(x+h))/h

Find a common denominator.

f'(x)=lim_(hrarr0)((3(x+1))/((x+h+1)(x+1))-(3(x+h+1))/((x+h+1)(x+1)))/h

Simplify.

f'(x)=lim_(hrarr0)(cancel(3x)cancel(+3)cancel(-3x)-3hcancel(-3))/(h(x+h+1)(x+1))

f'(x)=lim_(hrarr0)(-3cancel(h))/(cancel(h)(x+h+1)(x+1))

f'(x)=lim_(hrarr0)(-3)/((x+h+1)(x+1))

Now, calculate the limit and plug in 0 for h.

f'(x)=-3/(x+1)^2