Using the limit definition, how do you differentiate f(x)=3-x^2?

1 Answer
Dec 20, 2015

The limit definition of the derivative:

lim_(hrarr0)(f(x+h)-f(x))/h

We know that f(x)=3-x^2 and
f(x+h)=3-(x+h)^2

=lim_(hrarr0)(3-(x+h)^2-(3-x^2))/h

=lim_(hrarr0)(3-(x^2+2hx+h^2)-3+x^2)/h

=lim_(hrarr0)(3-x^2-2hx-h^2-3+x^2)/h

=lim_(hrarr0)(-2hx-h^2)/h

=lim_(hrarr0)-2x-h

Now we can plug in 0 for h.

=-2x

Thus, f'(x)=-2x.