Using the limit definition, how do you differentiate f(x)=4 -2x -x^2f(x)=42xx2?

1 Answer
Dec 27, 2016

f'(x) = -2-2x

Explanation:

The limit definition of the derivative states that:

f'(x) = lim_(Deltax->0) (f(x+Deltax)-f(x))/(Deltax)

For f(x)= 2-2x-x^2 we have:

f'(x) = lim_(Deltax->0) ((2-2(x+Deltax)-(x+Deltax)^2)-(2-2x-x^2))/(Deltax)

f'(x) = lim_(Deltax->0) ((2-2x-2Deltax-x^2-2xDeltax-(Deltax)^2-2+2x+x^2))/(Deltax)

f'(x) = lim_(Deltax->0) ((-2Deltax-2xDeltax+(Deltax)^2))/(Deltax)

f'(x) = lim_(Deltax->0) (-2-2x+Deltax)=-2-2x