Using the limit definition, how do you differentiate f(x) =4/(sqrt(x))f(x)=4√x?
1 Answer
Jan 8, 2016
Explanation:
The limit definition of the derivative:
lim_(hrarr0)(f(x+h)-f(x))/h
Thus, the derivative can be found through
f'(x)=lim_(hrarr0)(4/sqrt(x+h)-4/sqrtx)/h
=lim_(hrarr0)(4/sqrt(x+h)-4/sqrtx)/h*(sqrtx * sqrt(x+h))/(sqrtx * sqrt(x+h))
=lim_(hrarr0)(4sqrtx-4sqrt(x+h))/(hsqrtxsqrt(x+h))
=lim_(hrarr0)(4(sqrtx-sqrt(x+h)))/(hsqrtxsqrt(x+h))*(sqrtx+sqrt(x+h))/(sqrtx+sqrt(x+h))
=lim_(hrarr0)(4(x-(x+h)))/(hsqrtxsqrt(x+h)(sqrtx+sqrt(x+h)))
=lim_(hrarr0)(-4h)/(hsqrtxsqrt(x+h)(sqrtx+sqrt(x+h)))
=lim_(hrarr0)(-4)/(sqrtxsqrt(x+h)(sqrtx+sqrt(x+h)))
Now, plug in
=(-4)/(sqrtxsqrtx(sqrtx+sqrtx))
=(-4)/(x(2sqrtx)
=color(green)(-2/x^(3/2)