Using the limit definition, how do you differentiate f(x) =4/(sqrt(x))f(x)=4x?

1 Answer
Jan 8, 2016

f'(x)=-2/x^(3/2)

Explanation:

The limit definition of the derivative:

lim_(hrarr0)(f(x+h)-f(x))/h

Thus, the derivative can be found through

f'(x)=lim_(hrarr0)(4/sqrt(x+h)-4/sqrtx)/h

=lim_(hrarr0)(4/sqrt(x+h)-4/sqrtx)/h*(sqrtx * sqrt(x+h))/(sqrtx * sqrt(x+h))

=lim_(hrarr0)(4sqrtx-4sqrt(x+h))/(hsqrtxsqrt(x+h))

=lim_(hrarr0)(4(sqrtx-sqrt(x+h)))/(hsqrtxsqrt(x+h))*(sqrtx+sqrt(x+h))/(sqrtx+sqrt(x+h))

=lim_(hrarr0)(4(x-(x+h)))/(hsqrtxsqrt(x+h)(sqrtx+sqrt(x+h)))

=lim_(hrarr0)(-4h)/(hsqrtxsqrt(x+h)(sqrtx+sqrt(x+h)))

=lim_(hrarr0)(-4)/(sqrtxsqrt(x+h)(sqrtx+sqrt(x+h)))

Now, plug in 0 for h.

=(-4)/(sqrtxsqrtx(sqrtx+sqrtx))

=(-4)/(x(2sqrtx)

=color(green)(-2/x^(3/2)