Using the limit definition, how do you differentiate f(x) =4+x-2x^2?

1 Answer
May 21, 2016

f'(x) =1-4x,
see the derivation below.

Explanation:

By definition, the derivative of the function f(x) is
f'(x) = lim_(Delta x -> 0) (f(x+Delta x)-f(x))/(Delta x)

In our case it looks like

f'(x) =
= lim_(Delta x -> 0) (4+(x+Delta x)-2(x+Delta x)^2-4-x+2x^2)/(Delta x)=

= lim_(Delta x -> 0)(Delta x-4x Delta x-2(Delta x)^2)/(Delta x)=

= lim_(Delta x -> 0)(1-4x-2Delta x) =

= 1-4x - lim_(Delta x -> 0)(2Delta x) = 1-4x