Using the limit definition, how do you differentiate f(x) =4x^2?

1 Answer
Aug 15, 2016

8x.

Explanation:

The Derivative of a given function f w.r.t. x is, denoted by f'(x)

& is defined by,

f'(x)=lim_(trarrx) {(f(t)-f(x))/(t-x)}

f(x)=4x^2 rArr f(t)=4t^2

Therefore, f'(x)=lim_(trarrx) {(4t^2-4x^2)/(t-x)}

=4{lim_(trarrx) (t^2-x^2)/(t-x)}

=4[lim_(trarrx) {(t+x)(cancel(t-x))}/((cancel(t-x))]]

=4{lim_(trarrx) (t+x)}

=4(x+x)=8x.

Enjoy Maths!