Using the limit definition, how do you differentiate #f(x)=sec x#?
1 Answer
# f'(x) = d/dx sec x =tanx secx #
Explanation:
We have:
# f(x)=secx #
Using the limit definition of the derivative, we have:
# f'(x) = lim_(h rarr 0) (f(x+h)-f(x))/h #
# \ \ \ \ \ \ \ \ = lim_(h rarr 0) (sec(x+h)-sec(x))/h #
# \ \ \ \ \ \ \ \ = lim_(h rarr 0) (1/cos(x+h)-1/cos(x))/h #
# \ \ \ \ \ \ \ \ = lim_(h rarr 0) ((cosx-cos(x+h))/(cos(x+h)cos(x)))/h #
# \ \ \ \ \ \ \ \ = lim_(h rarr 0) (cosx-cos(x+h))/(hcos(x+h)cos(x)) #
# \ \ \ \ \ \ \ \ = lim_(h rarr 0) (cosx-(cosxcos h-sin x sin h))/(hcos(x+h)cos(x)) #
# \ \ \ \ \ \ \ \ = lim_(h rarr 0) (cosx-cosxcos h+sin x sin h)/(hcos(x+h)cos(x)) #
# \ \ \ \ \ \ \ \ = lim_(h rarr 0) (cosx(1-cos h)+sin x sin h)/(hcos(x+h)cos(x)) #
# \ \ \ \ \ \ \ \ = lim_(h rarr 0) (cosx(1-cos h))/(hcos(x+h)cos(x))+(sin x sin h)/(hcos(x+h)cos(x)) #
# \ \ \ \ \ \ \ \ = lim_(h rarr 0) ((1-cos h))/(hcos(x+h))+(tan x sin h)/(hcos(x+h)) #
# \ \ \ \ \ \ \ \ = lim_(h rarr 0) (1-cos h)/h * sec(x+h)+(sin h)/h * tanx sec(x+h) #
Then we use two standard calculus limits:
# lim_(theta rarr 0) (1-cos theta)/theta = 0 # and# lim_(theta rarr 0) (sin theta)/theta = 1#
Which gives us:
# f'(x) = 0 * sec(x) + 1 * tanx sec(x) #
# \ \ \ \ \ \ \ \ = tanx secx #