Using the limit definition, how do you differentiate f(x) =sqrt(x−3)f(x)=x3?

1 Answer
Nov 11, 2015

See the explanation section below.

Explanation:

The crucial step is to use the following to remove the square roots from the numerator.

(sqrt(x+h-3)-sqrt(x-3))/h = ((sqrt(x+h-3)-sqrt(x-3)))/h ((sqrt(x+h-3)+sqrt(x-3)))/((sqrt(x+h-3)+sqrt(x-3)))x+h3x3h=(x+h3x3)h(x+h3+x3)(x+h3+x3)

= (x+h-3-(x-3))/(h(sqrt(x+h-3)+sqrt(x-3))=x+h3(x3)h(x+h3+x3)

= 1/(sqrt(x+h-3)+sqrt(x-3))=1x+h3+x3