Given f(x)=x^{-1/2}=1/\sqrtxf(x)=x−12=1√x
\therefore f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
=\lim_{h\to 0}\frac{1/\sqrt{x+h}-1/\sqrtx}{h}
=\lim_{h\to 0}\frac{1/{\sqrtx\sqrt{1+h/x}}-1/\sqrtx}{h}
=1/\sqrtx\lim_{h\to 0}\frac{1/(1+h/x)^{1/2}-1}{h}
=1/\sqrtx\lim_{h\to 0}\frac{(1+h/x)^{-1/2}-1}{h}
=1/\sqrtx\lim_{h\to 0}\frac{(1-1/2(h/x)+\frac{(-1/2)(-3/2)}{2!}(h/x)^2-\ldots)-1}{h}
=1/\sqrtx\lim_{h\to 0}\frac{-1/2(h/x)+\frac{(-1/2)(-3/2)}{2!}(h/x)^2-\ldots}{h}
=1/\sqrtx\lim_{h\to 0}(-1/2(1/x)+\frac{(-1/2)(-3/2)}{2!}(h/x^2)-\ldots)
=1/\sqrtx(-1/2(1/x)+0)
=-1/{2x\sqrtx}
=-1/{2x^{3/2}}