Using the limit definition, how do you differentiate f(x) = x^2+3?

1 Answer
Nov 16, 2015

See expanation

Explanation:

f'(x_0)=lim_{h->0}(f(x_0+h)-f(x_0))/h

If we substitute x_0^2+3 we get:

f'(x_0)=lim_{h->0}((x_0+h)^2+3-(x_0^2+3))/h

f'(x_0)=lim_{h->0}((x_0^2+2x_0h+h^2)+3-x_0^2-3)/h

f'(x_0)=lim_{h->0}(x_0^2+2x_0h+h^2+3-x_0^2-3)/h

f'(x_0)=lim_{h->0}(2x_0h+h^2)/h

f'(x_0)=lim_{h->0}(h(2x_0+h))/h

f'(x_0)=lim_{h->0}(2x_0+h)

f'(x_0)=2x_0