Using the limit definition, how do you differentiate f(x)=x^2+3x+1?

1 Answer
Apr 11, 2018

f'(x)=2x+3

Explanation:

f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h

In this case

lim_(hrarr0)(f(x+h)-f(x))/h

=lim_(hrarr0)((x+h)^2+3(x+h)+1-x^2-3x-1)/h

=lim_(hrarr0)(x^2+2xh+h^2+3x+3h+1-x^2-3x-1)/h

=lim_(hrarr0)(2xh+h^2+3h)/h

=lim_(hrarr0)2x+h+3=2x+3.