Using the limit definition, how do you differentiate f(x)=x^2-4x+23f(x)=x24x+23?

1 Answer
Mar 3, 2016

2x-42x4

Explanation:

The limit definition of the derivative is given by:

lim_(h->0)(f(x+h)-f(x))/h

Putting f(x) into the formula we get:

lim_(h->0)((x+h)^2-4(x+h)+23-x^2+4x-23)/h

Now expend out the brackets to get:

lim_(h->0) (x^2+2xh+h^2-4x-4h+23-x^2+4x-23)/h

Gathering the like terms:

lim_(h->0) (color(red)(cancelx^2)+2xh+h^2-color(blue)(cancel(4x))-4h+color(green)(cancel23)-color(red)(cancelx^2)+color(blue)(cancel(4x))-color(green)(cancel23))/h

=lim_(h->0)(2xh-4h+h^2)/h

=lim_(h->0)2x-4+h

Now evaluate the limit and we are left with:

=2x-4