Using the limit definition, how do you differentiate f(x)=x^3−7x+5f(x)=x37x+5?

1 Answer

f'(x)=3x^2-7

Explanation:

Given function: f(x)=x^3-7x+5

f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}

=\lim_{h\to 0}\frac{(x+h)^3-7(x+h)+5-(x^3-7x+5)}{h}

=\lim_{h\to 0}\frac{(x+h)^3-x^3-7h}{h}

=\lim_{h\to 0}\frac{(x+h-x)((x+h)^2+x^2+(x+h)x)-7h}{h}

=\lim_{h\to 0}\frac{h((x+h)^2+2x^2+hx)-7h}{h}

=\lim_{h\to 0}((x+h)^2+2x^2+hx-7)

=((x+0)^2+2x^2+0\cdot x-7)

=3x^2-7