Using the limit definition, how do you find the derivative of f(x) = 2sqrtx?

1 Answer
Dec 14, 2015

f'(x) = 1/sqrt(x)

Explanation:

Using the limit definition of a derivative, we have

f'(x) = lim_(h->0) (f(x+h)-f(x))/h

= lim_(h->0)(2sqrt(x+h)-2sqrt(x))/h

= 2lim_(h->0)(sqrt(x+h)-sqrt(x))/h*(sqrt(x+h)+sqrt(x))/(sqrt(x+h)+sqrt(x))

=2lim_(h->0)(x+h-x)/(h(sqrt(x+h)+sqrt(x))

=2lim_(h->0) 1/(sqrt(x+h)+sqrt(x))

= 2*1/(sqrt(x+0)+sqrt(x))

=2*1/(2sqrt(x))

=1/sqrt(x)