Using the limit definition, how do you find the derivative of f(x) = 2x^2-xf(x)=2x2x?

1 Answer
Feb 8, 2016

f'(x)=4x-1

Explanation:

The limit definition of the derivative states that the derivative of the function f(x) is

f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h

Here, f(x)=2x^2-x, so f(x+h)=2(x+h)^2-(x+h).

The function's derivative is

f'(x)=lim_(hrarr0)([2(x+h)^2-(x+h)]-(2x^2-x))/h

Distribute and simplify.

=lim_(hrarr0)([2(x^2+2xh+h^2)-x-h]-2x^2+x)/h

=lim_(hrarr0)([2x^2+4xh+2h^2-x-h]-2x^2+x)/h

=lim_(hrarr0)(color(red)(cancel(color(black)(2x^2)))+4xh+2h^2color(red)(cancel(color(black)(-x)))-hcolor(red)(cancel(color(black)(-2x^2)))color(red)(cancel(color(black)(+x))))/h

=lim_(hrarr0)(4xh+2h^2-h)/h

Divide an h from each term.

=lim_(hrarr0)4x+2h-1

Now the limit can be evaluated by plugging in 0 for h.

f'(x)=4xcolor(red)(cancel(color(black)(+2(0))))-1

f'(x)=4x-1