Using the limit definition, how do you find the derivative of # f(x) = 2x^2-x#?

1 Answer
Feb 8, 2016

#f'(x)=4x-1#

Explanation:

The limit definition of the derivative states that the derivative of the function #f(x)# is

#f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h#

Here, #f(x)=2x^2-x#, so #f(x+h)=2(x+h)^2-(x+h)#.

The function's derivative is

#f'(x)=lim_(hrarr0)([2(x+h)^2-(x+h)]-(2x^2-x))/h#

Distribute and simplify.

#=lim_(hrarr0)([2(x^2+2xh+h^2)-x-h]-2x^2+x)/h#

#=lim_(hrarr0)([2x^2+4xh+2h^2-x-h]-2x^2+x)/h#

#=lim_(hrarr0)(color(red)(cancel(color(black)(2x^2)))+4xh+2h^2color(red)(cancel(color(black)(-x)))-hcolor(red)(cancel(color(black)(-2x^2)))color(red)(cancel(color(black)(+x))))/h#

#=lim_(hrarr0)(4xh+2h^2-h)/h#

Divide an #h# from each term.

#=lim_(hrarr0)4x+2h-1#

Now the limit can be evaluated by plugging in #0# for #h#.

#f'(x)=4xcolor(red)(cancel(color(black)(+2(0))))-1#

#f'(x)=4x-1#