Using the limit definition, how do you find the derivative of f(x) = 3x^2-5x+2f(x)=3x25x+2?

1 Answer
Feb 8, 2016

See explanation.

Explanation:

The derivative at x_0x0 is:

f'(x_0)=lim_{h->0}(f(x_0+h)-f(x_0))/h

Using this definition we get:

f'(x_0)=lim_{h->0}(f(x_0+h)-f(x_0))/h=lim_{h->0}([3(x_0+h)^2-5(x_0+h)+2]-[3x_0^2-5x_0+2])/h

f'(x_0)=lim_{h->0}(3(x_0+h)^2-5x_0-5h+2-3x_0^2+5x_0-2)/h=

=lim_{h->0}(3x_0^2+6x_0h+h^2-5x_0-5h+2-3x_0^2+5x_0-2)/h=

=lim_{h->0}(6x_0h-5h+h^2)/h=lim_{h->0}(h*(6x_0-5+h))/h=

=lim_{h->0}(6x_0-5+h)=6x_0-5

Finally we can write that f'(x_0)=6x_0-5

QED