Using the limit definition, how do you find the derivative of f(x) = 3x^2 + 8x + 4 f(x)=3x2+8x+4?

1 Answer
Mar 25, 2016

f'(x)=6x+8; see below for explanation

Explanation:

The limit definition of the derivative states that for a function f(x) its derivative equals

f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h

So, when f(x)=3x^2+8x+4, we see that f(x+h)=3(x+h)^2+8(x+h)+4.

Applying the limit definition, we obtain

f'(x)=lim_(hrarr0)(3(x+h)^2+8(x+h)+4-(3x^2+8x+4))/h

Find (x+h)^2. Distribute the negative into -(3x^2+4x+8).

f'(x)=lim_(hrarr0)(3(x^2+2hx+h^2)+8(x+h)+4-3x^2-8x-4)/h

Distribute the 3 and the 8.

f'(x)=lim_(hrarr0)(3x^2+6hx+3h^2+8x+8h+4-3x^2-8x-4)/h

Cancel all like terms.

f'(x)=lim_(hrarr0)(color(red)(cancel(color(black)(3x^2)))+6hx+3h^2color(blue)(cancel(color(black)(+8x)))+8hcolor(green)(cancel(color(black)(+4)))color(red)(cancel(color(black)(-3x^2)))color(blue)(cancel(color(black)(-8x)))color(green)(cancel(color(black)(-4))))/h

f'(x)=lim_(hrarr0)(6hx+3h^2+8h)/h

Divide h from each term.

f'(x)=lim_(hrarr0)6x+3h+8

To evaluate the limit, plug in 0 for h.

f'(x)=6x+3(0)+8

f'(x)=6x+8