Using the limit definition, how do you find the derivative of f(x) = 3x^2 + 8x + 4 f(x)=3x2+8x+4?
1 Answer
Explanation:
The limit definition of the derivative states that for a function
f'(x)=lim_(hrarr0)(f(x+h)-f(x))/h
So, when
Applying the limit definition, we obtain
f'(x)=lim_(hrarr0)(3(x+h)^2+8(x+h)+4-(3x^2+8x+4))/h
Find
f'(x)=lim_(hrarr0)(3(x^2+2hx+h^2)+8(x+h)+4-3x^2-8x-4)/h
Distribute the
f'(x)=lim_(hrarr0)(3x^2+6hx+3h^2+8x+8h+4-3x^2-8x-4)/h
Cancel all like terms.
f'(x)=lim_(hrarr0)(color(red)(cancel(color(black)(3x^2)))+6hx+3h^2color(blue)(cancel(color(black)(+8x)))+8hcolor(green)(cancel(color(black)(+4)))color(red)(cancel(color(black)(-3x^2)))color(blue)(cancel(color(black)(-8x)))color(green)(cancel(color(black)(-4))))/h
f'(x)=lim_(hrarr0)(6hx+3h^2+8h)/h
Divide
f'(x)=lim_(hrarr0)6x+3h+8
To evaluate the limit, plug in
f'(x)=6x+3(0)+8
f'(x)=6x+8