Using the limit definition, how do you find the derivative of f(x) = 4 -2x -x^2?

1 Answer
May 13, 2018

d/dx (4-2x-x^2) = -2-2x

Explanation:

By definition:

d/dx (4-2x-x^2) = lim_(h->0) ( ( 4-2(x+h) -(x+h)^2 ) - (4-2x-x^2))/h

d/dx (4-2x-x^2) = lim_(h->0) ( ( color(blue)(4) color(red)(-2x)-2h color(green)(-x^2)-2hx -h^2 color(blue)(- 4) color(red)(+2x) color(green)(+x^2)))/h

d/dx (4-2x-x^2) = lim_(h->0) ( -2h-2hx-h^2)/h

d/dx (4-2x-x^2) = lim_(h->0) ( -2-2x-h)

d/dx (4-2x-x^2) = -2-2x