Using the limit definition, how do you find the derivative of f(x)=4x^2 -1f(x)=4x21?

1 Answer
Jan 29, 2016

We get f`(x)=8xf`(x)=8x using our definition:

Explanation:

Let us start with our definition:
f`(x)=lim_(h->0)(f(x+h)-f(x))/h

where h is a small increment.
We can use our function into this definition:
f`(x)=lim_(h->0)((4(x+h)^2-1)-(4x^2-1))/h=

=lim_(h->0)((4x^2+8xh+4h^2-1-4x^2+1)/h)=

=lim_(h->0)((8xh+4h^2)/h)=

=lim_(h->0)(4h(2x+h)/h)=
cancel h
=lim_(h->0)(4(2x+h))=
as h->0 we have:
f`(x)=lim_(h->0)(4(2x+h))=8x