The classical definition of the derivative is
(df(x))/dx=lim_(h->0)[f(x+h)-f(x)]/h
where f(x)=cosx and f(x+h)=cos(x+h)
hence we have that
(df(x))/dx=lim_(h->0)[f(x+h)-f(x)]/h=>
(df(x))/dx=lim_(h->0)[cos(x+h)-cosx]/h=>
(df(x))/dx=lim_(h->0)[[cosx*cosh-sinx*sinh]-cosx]/h=>
(df(x))/dx=lim_(h->0)[(cosx(cosh-1))/h-sinx*sinh/h]=>
(df(x))/dx=lim_(h->0)[(cosx(cosh-1))/h]-lim_(h->0)[sinx*sinh/h]
But we know that lim_(h->0)[((cosh-1))/h]=0 and
lim_(h->0)(sinh/h)=1
Hence
(df(x))/dx=lim_(h->0)[(cosx(cosh-1))/h]-lim_(h->0)[sinx*sinh/h]
(df(x))/dx=lim_(h->0)(cosx)*lim_(h->0)(cosh-1)/h-lim_(h->0)(sinx)*lim_(h->0)sinh/h
(d(f(x)))/dx=cosx*0-sinx*1=>
(d(f(x)))/dx=-sinx
Finally (dcosx)/dx=-sinx