Using the limit definition, how do you find the derivative of f(x)=cosx ?

1 Answer

The classical definition of the derivative is

(df(x))/dx=lim_(h->0)[f(x+h)-f(x)]/h

where f(x)=cosx and f(x+h)=cos(x+h)

hence we have that

(df(x))/dx=lim_(h->0)[f(x+h)-f(x)]/h=> (df(x))/dx=lim_(h->0)[cos(x+h)-cosx]/h=> (df(x))/dx=lim_(h->0)[[cosx*cosh-sinx*sinh]-cosx]/h=> (df(x))/dx=lim_(h->0)[(cosx(cosh-1))/h-sinx*sinh/h]=> (df(x))/dx=lim_(h->0)[(cosx(cosh-1))/h]-lim_(h->0)[sinx*sinh/h]

But we know that lim_(h->0)[((cosh-1))/h]=0 and
lim_(h->0)(sinh/h)=1

Hence

(df(x))/dx=lim_(h->0)[(cosx(cosh-1))/h]-lim_(h->0)[sinx*sinh/h]

(df(x))/dx=lim_(h->0)(cosx)*lim_(h->0)(cosh-1)/h-lim_(h->0)(sinx)*lim_(h->0)sinh/h

(d(f(x)))/dx=cosx*0-sinx*1=> (d(f(x)))/dx=-sinx

Finally (dcosx)/dx=-sinx