Using the limit definition, how do you find the derivative of f(x)=sqrt(x−3)?
1 Answer
see explanation
Explanation:
f'(x) =
lim_(h→0)( f(x+h) -f(x))/h
=lim_(h→0) (sqrt(x+h-3) - sqrt(x-3))/h the aim here is to eliminate h from the denominator so that there is no division by zero as h→ 0.
consider multiplying numerator/denominator by
sqrt(x+h-3) + sqrt(x-3)
color(black)("----------------------------------------------------------")
numerator= (sqrt(x+h-3) -sqrt(x-3))(sqrt(x+h-3) + sqrt(x-3))
distribute brackets using FOIL
= x+h-3 +sqrt((x-3))sqrt(x+h-3)) -sqrt(x-3)sqrt(x+h-3) -(x-3)
=x+h-3-x+3 =h
color(black)("-------------------------------------------------------")
denominator
sqrt(x-h+3) + sqrt(x-3)
color(black)("------------------------------------------------")
now returning to f'(x)f'(x) =
lim_(h→0) h/(h(sqrt(x-h+3) + sqrt(x-3))
= lim_(h→0) cancel(h)/(cancel(h)sqrt(x-h+3) + sqrt(x-3)
= 1/(sqrt(x-3) +sqrt(x-3)) = 1/(2sqrt(x-3))