f(x)=x^2+3x+1
f^'(x)=Lim_(hrarr0)(f(x+h)-f(x))/h
impliesf^'(x)=Lim_(hrarr0){(x+h)^2+3(x+h)+1-(x^2+3x+1)}/h
impliesf^'(x)=Lim_(hrarr0){(x+h)^2+3(x+h)+1-x^2-3x-1}/h
impliesf^'(x)=Lim_(hrarr0)(x^2+2xh+h^2+3x+3h+1-x^2-3x-1}/h
impliesf^'(x)=Lim_(hrarr0)(2xh+h^2+3h}/h
impliesf^'(x)=Lim_(hrarr0)(h(2x+h+3)}/h
impliesf^'(x)=Lim_(hrarr0)(2x+h+3)
impliesf^'(x)=2x+0+3
impliesf^'(x)=2x+3