Using the limit definition, how do you find the derivative of f(x)= x^2 -5x + 3f(x)=x25x+3?

1 Answer
Jun 11, 2018

f'(x) = 2x - 5

Explanation:

Given: f(x) = x^2 - 5x + 3 use the limit definition of the derivative.

Limit definition of the derivative:

f'(x) = lim h-> 0 " "(f(x+h) - f(x))/(h

Use substitution to find f(x + h):

f(x + h) = (x + h)^2 - 5(x + h) + 3

= x^2 + 2xh + h^2 -5x -5h + 3

f'(x) = lim h-> 0 " "(x^2 + 2xh + h^2 -5x -5h + 3 - (x^2 - 5x + 3))/h

Distribute the negative:

f'(x) = lim h-> 0 " "(cancel(x^2) + 2xh + h^2 cancel(-5x) -5h + cancel(3) cancel(- x^2) + cancel(5x) cancel(- 3))/h

f'(x) = lim h-> 0 " "(2xh + h^2 - 5h)/h

Factor h from the numerator:

f'(x) = lim h-> 0 " "(cancel(h)(2x + h - 5))/cancel(h)

f'(x) = lim h-> 0 " "2x + h - 5

Take the limit (let h -> 0): f'(x) = 2x - 5