Using the limit definition, how do you find the derivative of f ( x) = x^4?

2 Answers

f' (x)=4x^3

Explanation:

Given f (x)=x^4

Let y=x^4

replace y with y+Delta y and x with x+Delta x

y=x^4

y+Delta y=(x+Delta x)^4

y+Delta y=x^4+4*x^3(Delta x)+6*x^2(Delta x)^2+4x(Delta x)^3+(Delta x)^4

Subtract y from both sides

y+Delta ycolor(red)(-y)=x^4+4*x^3(Delta x)+6*x^2(Delta x)^2+4x(Delta x)^3+(Delta x)^4color(red)(-x^4)

Delta y=4*x^3(Delta x)+6*x^2(Delta x)^2+4x(Delta x)^3+(Delta x)^4

Divide both sides by Delta x

(Delta y)/(Delta x)=(4*x^3(Delta x)+6*x^2(Delta x)^2+4x(Delta x)^3+(Delta x)^4)/(Delta x)

(Delta y)/(Delta x)=4*x^3+6*x^2(Delta x)+4x(Delta x)^2+(Delta x)^3

Take now the color(blue)("LIMIT") of (Delta y)/(Delta x) as Delta x rarr 0

color(blue)(dy/dx=lim_(Deltax rarr 0)(Delta y)/(Delta x)=color(blue)(lim_(Delta xrarr 0)(4*x^3+6*x^2(Delta x)+4x(Delta x)^2+(Delta x)^3)=4x^3)

God bless....I hope the explanation is useful.

Apr 20, 2016

Here is an alternative using one form of the limit definition.

Explanation:

I am using the limit definition in the form

f'(a) = lim_(xrarra)(f(x)-f(a))/(x-a)

For f(x)=x^4, we get

f'(a) = lim_(xrarra)(x^4-a^4)/(x-a) " "

(This has form 0/0, so x-a is a factor of the numerator)

= lim_(xrarra)((x-a)(x^3+x^2a+xa^2+a^3))/(x-a) " " (form 0/0)

= lim_(xrarra)(x^3+x^2a+xa^2+a^3)

= (a)^3+(a)^2a+(a)a^2+a^3

= 4a^3

Since f'(a) = 4a^3, we get

f'(x) = 4x^3