Verify that each equation is an identity?

(sec a - tan a)(sec a + tan a) = 1

1 Answer
Nov 29, 2016

Multiply out the brackets and then apply the Pythagorean Identity Tan^2(x) + 1 = Sec^2(x)tan2(x)+1=sec2(x)

Explanation:

Left Side = (SecA - TanA)(SecA + TanA)
= Sec^2A + SecATanA - TanASecA - Tan^2Asec2A+secAtanAtanAsecAtan2A

Notice that SecATanA - TanASecA = 0secAtanAtanAsecA=0

So Left Side = Sec^2A - Tan^2Asec2Atan2A

Now apply the Pythagorean Identity Tan^2A + 1 = Sec^2Atan2A+1=sec2A by replacing the Sec^2Asec2A by Tan^2A + 1tan2A+1

Left Side = Tan^2A + 1 - Tan^2Atan2A+1tan2A

Left Side = 1

Left Side = Right Side [Q.E.D.]