What are all the zeroes of f(x) = 2x^3 - 5x^2 + 3x - 1?
1 Answer
The Real root of
x_1 = 1/6 (5 + root(3)(44+3sqrt(177))+root(3)(44-3sqrt(177)))
and Complex roots as below...
Explanation:
Given:
f(x) = 2x^3-5x^2+3x-1
First substitute
Then:
2t^3 = 2(x-5/6)^3 = 2(x^3-5/2x^2+25/12x-125/216)
=2x^3-5x^2+25/6x-125/108
-7/6t = -7/6x+35/36 = -7/6x+105/108
2t^3-7/6t = 2x^3-5x^2+3x-5/27
So:
2t^3-7/6t-22/27 = 2x^3-5x^2+3x-1 = f(x)
Multiply through by
108t^3-63t-44 = 54 f(x)
So we want to solve:
108t^3-63t-44 = 0
Use Cardano's method, letting
0 = 108(u+v)^3-63(u+v)-44
= 108u^3+108v^3+(324uv-63)(u+v)-44
= 108u^3+108v^3+9(36uv-7)(u+v)-44
Next make the coefficient of the
= 108u^3+108(7/(36u))^3-44
= 108u^3+343/(432u^3)-44
Multiply through by
46656(u^3)^2-19008(u^3)+343 = 0
Then using the quadratic formula:
u^3 = (19008+-sqrt(19008^2-4*46656*343))/(2*46656)
= (19008+-sqrt(361304064-64012032))/93312
= (19008+-sqrt(297292032))/93312
= (19008+-1296 sqrt(177))/93312
= (44+-3sqrt(177))/216
Since the derivation was symmetric in
Hence the Real root is:
t = root(3)((44+3sqrt(177))/216)+root(3)((44-3sqrt(177))/216)
= 1/6 (root(3)(44+3sqrt(177))+root(3)(44-3sqrt(177)))
and hence:
x_1 = 5/6 + t = 1/6 (5 + root(3)(44+3sqrt(177))+root(3)(44-3sqrt(177)))
The Complex roots are:
x_2 = 1/6 (5 + omega root(3)(44+3sqrt(177))+omega^2 root(3)(44-3sqrt(177)))
x_3 = 1/6 (5 + omega^2 root(3)(44+3sqrt(177))+omega root(3)(44-3sqrt(177)))
where