What are all the zeroes of f(x)=5x^3+8x^2-4x+3?

1 Answer
Nov 22, 2015

The Real root is:

x_1 = -8/15+root(3)((-4489+45sqrt(6185))/6750)+root(3)((-4489-45sqrt(6185))/6750)

~~ -2.11299545715260

Complex roots as shown below.

Explanation:

f(x)=5x^3+8x^2-4x+3

This is of the form ax^3+bx^2+cx+d with a=5, b=8, c=-4 and d=3

Its discriminant Delta is given by the formula:

Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd

=1024+1280-6144-6075-8640=-18555

Since Delta < 0 this cubic has one Real zero and two Complex conjugate ones.

So we can use a Tschirnhaus transformation to eliminate the x^2 term, then use Cardano's method.

Let t = x+8/15

Then:

5t^3 = 5(x+8/15)^3 = 5x^3+8x^2+64/15x+512/675

-124/15t = -124/15(x+8/15) = -124/15x-992/225

Hence:

5t^3-124/15t+4489/675 = 5x^3+8x^2-4x+3

Multiplying through by 675, we want to solve:

3375t^3-5580t+4489 = 0

Let t=u+v

3375u^3+3375v^3+(10125uv-5580)(u+v)+4489=0

To eliminate the (u+v) term add the constraint:

v = 5580/(10125u) = 124/(225u)

Then we have:

0 = 3375u^3+3375(124/(225u))^3+4489

=3375u^3+3375(1906624/(11390625u^3))+4489

=3375u^3+1906624/(3375u^3)+4489

Multiply through by 3375u^3 to get:

11390625(u^3)^2+15150375(u^3)+1906624 = 0

Then by the quadratic formula:

u^3 = (-15150375+-sqrt(15150375^2-(4*11390625*1906624)))/(2*11390625)

= (-15150375+-sqrt(142663306640625))/22781250

= (-15150375+-151875sqrt(6185))/22781250

= (-4489+-45sqrt(6185))/6750

Since the derivation is symmetric in u and v, we can deduce:

t = root(3)((-4489+45sqrt(6185))/6750)+root(3)((-4489-45sqrt(6185))/6750)

x_1 = -8/15+root(3)((-4489+45sqrt(6185))/6750)+root(3)((-4489-45sqrt(6185))/6750)

The Complex roots are:

x_2 = -8/15+omega root(3)((-4489+45sqrt(6185))/6750)+omega^2 root(3)((-4489-45sqrt(6185))/6750)

x_3 = -8/15+omega^2 root(3)((-4489+45sqrt(6185))/6750)+omega root(3)((-4489-45sqrt(6185))/6750)

where omega = -1/2+sqrt(3)/2i