What are all the zeroes of f(x)=5x^3+8x^2-4x+3?
1 Answer
The Real root is:
x_1 = -8/15+root(3)((-4489+45sqrt(6185))/6750)+root(3)((-4489-45sqrt(6185))/6750)
~~ -2.11299545715260
Complex roots as shown below.
Explanation:
This is of the form
Its discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
=1024+1280-6144-6075-8640=-18555
Since
So we can use a Tschirnhaus transformation to eliminate the
Let
Then:
5t^3 = 5(x+8/15)^3 = 5x^3+8x^2+64/15x+512/675
-124/15t = -124/15(x+8/15) = -124/15x-992/225
Hence:
5t^3-124/15t+4489/675 = 5x^3+8x^2-4x+3
Multiplying through by
3375t^3-5580t+4489 = 0
Let
3375u^3+3375v^3+(10125uv-5580)(u+v)+4489=0
To eliminate the
v = 5580/(10125u) = 124/(225u)
Then we have:
0 = 3375u^3+3375(124/(225u))^3+4489
=3375u^3+3375(1906624/(11390625u^3))+4489
=3375u^3+1906624/(3375u^3)+4489
Multiply through by
11390625(u^3)^2+15150375(u^3)+1906624 = 0
Then by the quadratic formula:
u^3 = (-15150375+-sqrt(15150375^2-(4*11390625*1906624)))/(2*11390625)
= (-15150375+-sqrt(142663306640625))/22781250
= (-15150375+-151875sqrt(6185))/22781250
= (-4489+-45sqrt(6185))/6750
Since the derivation is symmetric in
t = root(3)((-4489+45sqrt(6185))/6750)+root(3)((-4489-45sqrt(6185))/6750)
x_1 = -8/15+root(3)((-4489+45sqrt(6185))/6750)+root(3)((-4489-45sqrt(6185))/6750)
The Complex roots are:
x_2 = -8/15+omega root(3)((-4489+45sqrt(6185))/6750)+omega^2 root(3)((-4489-45sqrt(6185))/6750)
x_3 = -8/15+omega^2 root(3)((-4489+45sqrt(6185))/6750)+omega root(3)((-4489-45sqrt(6185))/6750)
where