What are the antiderivatives of sec(x)sec(x), csc(x)csc(x) and cot(x)cot(x)?

1 Answer
Oct 16, 2014

Since

(ln|secx+tanx|)'={secxtanx+sec^2x}/{sec x+tanx}=secx,

we have

int secx dx=ln|secx+tanx|+C


Since

(-ln|cscx+cotx|)'=-{-cscxcotx-csc^2x}/{cscx+cotx}=cscx,

we have

int cscx dx=-ln|cscx+cotx|+C


int cotx dx=int{cosx}/{sinx}dx=ln|sinx|+C


I hope that this was helpful.