We need to differentiate a quotient
(u/v)'=(u'v-uv')/v^2
Here
u=x, =>, u'=1
v=x^2+4,, =>,v'=2x
Therefore,
f'(x)=(1*(x^2+4)-x*(2x))/(x^2+4)^2
=(x^2+4-2x^2)/(x^2+4)^2=(4-x^2)/(x^2+4)^2
=((2+x)(2-x))/(x^2+4)^2
The critical values are when f'(x)=0
(2+x)(2-x)=0
x=-2 and x=-2
Let's calculate f''(x)
u=4-x^2, =>, u'=-2x
v=(x^2+4)^2, =>, v'(x)=4x(x^2+4)
f''(x)=(-2x(x^2+4)^2-4x(4-x^2)(x^2+4))/(x^2+4)^4
=(cancel(x^2+4)(-2x(x^2+4)-4x(4-x^2)))/(cancel(x^2+4)(x^2+4)^3)
=(-2x^3-8x-16x+4x^3)/(x^2+4)^3
=(2x^3-24x)/(x^2+4)^3
=(2x(x^2-12))/(x^2+4)^3
When f''(x)=0, we have inflexion points
2x(x^2-12)=0 when x=0 ; x=sqrt12=2sqrt3 and x=-sqrt12=-2sqrt3
When x=-2 , f''(x)>0, so we have a min
When x=2 , f''(x)<0, so we have a max
graph{x/(x^2+4) [-3.895, 3.9, -1.948, 1.947]}