What are the critical points of f(x) = x / (x^2 + 4)?

1 Answer
Nov 24, 2016

We have a min at (-2,-1/4) and a max at (2,1/4)

We have points of inflexions at (0,0) ; (2sqrt3,sqrt3/8) and (-2sqrt3,-sqrt3/8)

Explanation:

We need to differentiate a quotient

(u/v)'=(u'v-uv')/v^2

Here
u=x, =>, u'=1

v=x^2+4,, =>,v'=2x

Therefore,

f'(x)=(1*(x^2+4)-x*(2x))/(x^2+4)^2

=(x^2+4-2x^2)/(x^2+4)^2=(4-x^2)/(x^2+4)^2

=((2+x)(2-x))/(x^2+4)^2

The critical values are when f'(x)=0

(2+x)(2-x)=0

x=-2 and x=-2

Let's calculate f''(x)

u=4-x^2, =>, u'=-2x

v=(x^2+4)^2, =>, v'(x)=4x(x^2+4)

f''(x)=(-2x(x^2+4)^2-4x(4-x^2)(x^2+4))/(x^2+4)^4

=(cancel(x^2+4)(-2x(x^2+4)-4x(4-x^2)))/(cancel(x^2+4)(x^2+4)^3)

=(-2x^3-8x-16x+4x^3)/(x^2+4)^3

=(2x^3-24x)/(x^2+4)^3

=(2x(x^2-12))/(x^2+4)^3

When f''(x)=0, we have inflexion points

2x(x^2-12)=0 when x=0 ; x=sqrt12=2sqrt3 and x=-sqrt12=-2sqrt3

When x=-2 , f''(x)>0, so we have a min

When x=2 , f''(x)<0, so we have a max

graph{x/(x^2+4) [-3.895, 3.9, -1.948, 1.947]}