What are the critical values, if any, of f(x) = e^(2x) - 2xe^(2x)?

1 Answer
Jun 17, 2018

critical value is x = 0
critical point is (0, 1)

Explanation:

Given: f(x) = e^(2x) - 2xe^(2x)

Critical values are found by finding the first derivative and setting it equal to zero f'(x) = 0:

Derivative rules needed:

(e^u)' = u' e^u => u = 2x; " "u' = 2; " " (e^(2x))' = 2e^(2x)

Product rule: (uv)' = u v' + v u'

Let u = -2x; " "u' = -2; " "v = e^(2x); " "v' = 2e^(2x)

f'(x) = 2e^(2x) -2x(2e^(2x)) + (e^(2x))(-2)

f'(x) = 2e^(2x) - 4xe^(2x) - 2e^(2x)

f'(x) = - 4xe^(2x)

To find critical values:

f'(x) = - 4xe^(2x) = 0

x = 0 and e^(2x) = 0

cancel(ln e)^(2x) = ln(0) = "undefined"

critical value is x = 0

f(0) = e^0 - 2(0)e^0 = 1

critical point is (0, 1)