What are the first and second derivatives of f(x)=e^(2x)(lnx) f(x)=e2x(lnx)?

1 Answer
Aug 8, 2018

f^'(x)= e^(2x)( 1/x+ 2(lnx))
f^''(x)= (e^(2x)(2x-1))/ x^2
+ 2 e^(2x) ( 1/x+ 2 *(lnx))

Explanation:

f(x)= e^(2x)(ln x)

f^'(x)= e^(2x)* 1/x+ 2e^(2x)*(lnx)

f^'(x)= e^(2x)( 1/x+ 2(lnx))

f^''(x)= (x *2e^(2x)-e^(2x)*1)/ x^2

+ 2(e^(2x) * 1/x+ 2e^(2x) *(lnx))

f^''(x)= (e^(2x)(2x-1))/ x^2

+ 2 e^(2x) ( 1/x+ 2 *(lnx)) [Ans]