What are the first and second derivatives of f(x)=ln(x^2+2x-3) f(x)=ln(x2+2x3)?

1 Answer
Dec 30, 2015

f'(x)=(2x+2)/(x^2+2x-3)

f''(x)=-(2(x^2+2x+5))/(x^2+2x-3)^2

Explanation:

Use the chain rule -- if f(x)=lnu, then f'(x)=1/u*u'.

Thus,

f'(x)=1/(x^2+2x-3)*d/dx(x^2+2x-3)

=>(2x+2)/(x^2+2x-3)

Use the quotient rule to find the second derivative.

f''(x)=((x^2+2x-3)d/dx(2x+2)-(2x+2)d/dx(x^2+2x-3))/(x^2+2x-3)^2

=>(2(x^2+2x-3)-(2x+2)^2)/(x^2+2x-3)^2

Continued simplification yields:

f''(x)=-(2(x^2+2x+5))/(x^2+2x-3)^2