What are the first and second derivatives of g(x) =ln(sinx)-sin(lnx)?

1 Answer
Dec 12, 2015

g'(x)=cotx-(cos(lnx))/x

g''(x)=csc^2x+(sin(lnx)+cosln(x))/x^2

Explanation:

According to the chain rule:

d/dx[ln(u)]=(u')/u

d/dx[sin(u)]=u'cos(u)

Thus,

d/dx[ln(sinx)]=(d/dx[sinx])/sinx=cosx/sinx=cotx

d/dx[sin(lnx)]=d/dx[lnx]cos(lnx)=(cos(lnx))/x

g'(x)=cotx-(cos(lnx))/x

To find g''(x), find the derivative of each part.

d/dx[cotx]=-csc^2x

d/dx[(cos(lnx))/x]=(xd/dx[cos(lnx)]-cos(lnx)d/dx[x])/x^2

Find each derivative.

d/dx[cos(lnx)]=-sin(lnx)/x

d/dx[x]=1

Plug back in:

d/dx[(cos(lnx))/x]=(-sin(lnx)-cosln(x))/x^2

Thus,

g''(x)=csc^2x+(sin(lnx)+cosln(x))/x^2