What are the first and second derivatives of g(x) = lntanx?

1 Answer
Dec 14, 2015

g'(x)=sec^2x/tanx

g''(x)=(sec^2x(2tan^2x-sec^2x))/tan^2x

Explanation:

Know that d/dx[ln(u)]=(u')/u.

Therefore,

g'(x)=(d/dx[tanx])/tanx=sec^2x/tanx

g''(x)=(tanxd/dx[sec^2x]-sec^2xd/dx[tanx])/tan^2x

Find each derivative separately.

Chain rule:
d/dx[sec^2x]=2secxd/dx[secx]=2secx(secxtanx)=2sec^2xtanx

d/dx[tanx]=sec^2x

Plug these back in.

g''(x)=(2sec^2xtan^2x-sec^4x)/tan^2x

g''(x)=(sec^2x(2tan^2x-sec^2x))/tan^2x