What are the first and second derivatives of g(x) =(lnx)^2-ln(x^2)g(x)=(lnx)2ln(x2)?

1 Answer
Nov 30, 2015

d/dxg(x) = (2(ln(x)-1))/xddxg(x)=2(ln(x)1)x

d^2/dx^2g(x) = (4-2ln(x))/x^2d2dx2g(x)=42ln(x)x2

Explanation:

We will use

  • The chain rule:
    d/dxf(g(x)) = f'(g(x)g'(x)

  • The quotient rule:
    d/dxf(x)/g(x) = (f'(x)g(x) - f(x)g'(x))/g^2(x)

  • d/dx (f(x) +- g(x)) = f'(x) +- g'(x)

  • d/dxln(x) = 1/x

  • d/dx x^n = nx^(n-1)


g'(x) = d/dx(ln^2(x) - ln(x^2)) = d/dx(ln^2(x)) - d/dx(ln(x^2))

=2ln(x)(d/dxln(x)) - 1/(x^2)(d/dxx^2) (by the chain rule)

= 2ln(x)(1/x) - 1/x^2(2x)

= (2ln(x))/x - 2/x

= (2(ln(x) - 1))/x

To find the second derivative, we take the derivative of g'(x) using the quotient rule.

g''(x) = d/dx(2(ln(x)-1))/x

= ((d/dx2(ln(x)-1))x - 2(ln(x)-1)(d/dxx))/x^2

=((2(1/x))x - 2(ln(x)-1)(1))/x^2

= (2 - 2ln(x) + 2)/x^2

= (4-2ln(x))/x^2