What are the vertex, focus and directrix of y=3 -8x -4x^2 ?

1 Answer

Vertex (h, k)=(-1, 7)

Focus (h, k-p)=(-1, 7-1/16)=(-1, 111/16)

Directrix is an equation a horizontal line

y=k+p=7+1/16=113/16
y=113/16

Explanation:

From the given equation y=3-8x-4x^2

Do a little rearrangement

y=-4x^2-8x+3

factor out -4

y=-4(x^2+2x)+3

Complete the square by adding 1 and subtracting 1 inside the parenthesis

y=-4(x^2+2x+1-1)+3

y=-4(x+1)^2+4+3

y=-4(x+1)^2+7

y-7=-4(x+1)^2

(x--1)^2=-1/4(y-7) The negative sign indicates that the parabola opens downward

-4p=-1/4

p=1/16

Vertex (h, k)=(-1, 7)

Focus (h, k-p)=(-1, 7-1/16)=(-1, 111/16)

Directrix is an equation a horizontal line

y=k+p=7+1/16=113/16
y=113/16

Kindly see the graph of y=3-8x-4x^2

graph{(y-3+8x+4x^2)(y-113/16)=0[-20,20,-10,10]}

God bless...I hope the explanation is useful.