What are the vertex, focus and directrix of y=4x^2 + 5x + 7 y=4x2+5x+7?

1 Answer

Given equation:

y=4x^2+5x+7y=4x2+5x+7

y=4(x^2+5/4x)+7y=4(x2+54x)+7

y=4(x^2+5/4x+25/64)-25/64+7y=4(x2+54x+2564)2564+7

y=4(x+5/8)^2+423/64y=4(x+58)2+42364

(x+5/8)^2=1/4(y-423/64)(x+58)2=14(y42364)

Comparing above equation with the standard form of parabola X^2=4aYX2=4aY we get

X=x+5/8, \ Y=y-423/64, a=1/16

Vertex of Parabola

X=0, Y=0

x+5/8=0, y-423/64=0

x=-5/8, y=423/64

(-5/8, 423/64)

Focus of parabola

X=0, Y=a

x+5/8=0, y-423/64=1/16

x=-5/8, y=427/64

(-5/8, 427/64)

Directrix of parabola

Y=-a

y-423/64=-1/16

y=419/64