What are the zeros of f(x) = x^3-140x^2+7984x-107584?
2 Answers
Use Cardano's method to find Real zero:
x_1 = 1/3(140+8 root(3)(1628+12sqrt(20589))+8 root(3)(1628-12sqrt(20589)))
and two related Complex zeros.
Explanation:
Given:
f(x) = x^3-140x^2+7984x-107584
Discriminant
The discriminant
Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd
In our example,
Delta = 1249387417600-2035736559616-1180841984000-312506560512+2164555653120 = -115142033408
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
0=27f(x)=27x^3-3780x^2+215568x-2904768
=(3x-140)^3+13056(3x-140)+1667072
=t^3+13056t+1667072
where
Cardano's method
We want to solve:
t^3+13056t+1667072=0
Let
Then:
u^3+v^3+3(uv+4352)(u+v)+1667072=0
Add the constraint
u^3-82426462208/u^3+1667072=0
Multiply through by
(u^3)^2+1667072(u^3)-82426462208=0
Use the quadratic formula to find:
u^3=(-1667072+-sqrt((1667072)^2-4(1)(-82426462208)))/(2*1)
=(1667072+-sqrt(2779129053184+329705848832))/2
=(1667072+-sqrt(3108834902016))/2
=(1667072+-12288sqrt(20589))/2
=833536+-6144sqrt(20589)
=8^3(1628+-12sqrt(20589))
Since this is Real and the derivation is symmetric in
t_1=8 root(3)(1628+12sqrt(20589))+8 root(3)(1628-12sqrt(20589))
and related Complex roots:
t_2=8 omega root(3)(1628+12sqrt(20589))+8 omega^2 root(3)(1628-12sqrt(20589))
t_3=8 omega^2 root(3)(1628+12sqrt(20589))+8 omega root(3)(1628-12sqrt(20589))
where
Now
x_1 = 1/3(140+8 root(3)(1628+12sqrt(20589))+8 root(3)(1628-12sqrt(20589)))
x_2 = 1/3(140+8 omega root(3)(1628+12sqrt(20589))+8 omega^2 root(3)(1628-12sqrt(20589)))
x_3 = 1/3(140+8 omega^2 root(3)(1628+12sqrt(20589))+8 omega root(3)(1628-12sqrt(20589)))
Explanation:
I used the Cubic Equation calculator