What are the zeros of f(x) = x^3-140x^2+7984x-107584?

2 Answers
Nov 2, 2016

Use Cardano's method to find Real zero:

x_1 = 1/3(140+8 root(3)(1628+12sqrt(20589))+8 root(3)(1628-12sqrt(20589)))

and two related Complex zeros.

Explanation:

Given:

f(x) = x^3-140x^2+7984x-107584

color(white)()
Discriminant

The discriminant Delta of a cubic polynomial in the form ax^3+bx^2+cx+d is given by the formula:

Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd

In our example, a=1, b=-140, c=7984 and d=-107584, so we find:

Delta = 1249387417600-2035736559616-1180841984000-312506560512+2164555653120 = -115142033408

Since Delta < 0 this cubic has 1 Real zero and 2 non-Real Complex zeros, which are Complex conjugates of one another.

color(white)()
Tschirnhaus transformation

To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.

0=27f(x)=27x^3-3780x^2+215568x-2904768

=(3x-140)^3+13056(3x-140)+1667072

=t^3+13056t+1667072

where t=(3x-140)

color(white)()
Cardano's method

We want to solve:

t^3+13056t+1667072=0

Let t=u+v.

Then:

u^3+v^3+3(uv+4352)(u+v)+1667072=0

Add the constraint v=-4352/u to eliminate the (u+v) term and get:

u^3-82426462208/u^3+1667072=0

Multiply through by u^3 and rearrange slightly to get:

(u^3)^2+1667072(u^3)-82426462208=0

Use the quadratic formula to find:

u^3=(-1667072+-sqrt((1667072)^2-4(1)(-82426462208)))/(2*1)

=(1667072+-sqrt(2779129053184+329705848832))/2

=(1667072+-sqrt(3108834902016))/2

=(1667072+-12288sqrt(20589))/2

=833536+-6144sqrt(20589)

=8^3(1628+-12sqrt(20589))

Since this is Real and the derivation is symmetric in u and v, we can use one of these roots for u^3 and the other for v^3 to find Real root:

t_1=8 root(3)(1628+12sqrt(20589))+8 root(3)(1628-12sqrt(20589))

and related Complex roots:

t_2=8 omega root(3)(1628+12sqrt(20589))+8 omega^2 root(3)(1628-12sqrt(20589))

t_3=8 omega^2 root(3)(1628+12sqrt(20589))+8 omega root(3)(1628-12sqrt(20589))

where omega=-1/2+sqrt(3)/2i is the primitive Complex cube root of 1.

Now x=1/3(140+t). So the roots of our original cubic are:

x_1 = 1/3(140+8 root(3)(1628+12sqrt(20589))+8 root(3)(1628-12sqrt(20589)))

x_2 = 1/3(140+8 omega root(3)(1628+12sqrt(20589))+8 omega^2 root(3)(1628-12sqrt(20589)))

x_3 = 1/3(140+8 omega^2 root(3)(1628+12sqrt(20589))+8 omega root(3)(1628-12sqrt(20589)))

Nov 2, 2016

x ~~ 18.9, x ~~ 60 + 45i, and x ~~ 60 - 45i

Explanation: