What is #5^0#?
1 Answer
As Samiha explained, any number raised to the power of 0 is equal to 1. I am going to show how that works out.
By the laws of exponents, when the bases are equal, the powers can be added up for multiplication and subtracted for division.
i.e.,
As an example,
and
I'll be using the second property.
Now, we know that any number divided by itself is equal to 1. Just as an example,
But, applying the second property,
Thus, it can be concluded that
Thus,
I am going to show the same in another form.
Consider the following numbers arranged in a sequence (I have written their equivalents below).
It can be seen that the next term of the sequence can be obtained by multiplying the last one by 5.
Another way of putting this is that the previous term of a sequence can be obtained by dividing by 5.
The logical precedent of
Similarly, the logical precedent of
Since they both are the same sequence, it can be concluded that
This would again hold true for any number
So,