What is -7x-6y=4 when x=−3y+8? Solve using substitution, and please explain.

2 Answers
Nov 28, 2017

I got:
#x=-4#
#y=4#

Explanation:

We substitute #x# in the first equation with the value of #x# given in the second to get:

#-7(color(red)(-3y+8))-6y=4#

rearrange and solve for #y#:

#21y-56-6y=4#

#15y=60#

#y=60/15=4#

use this value of #y# into the second equation:

#x=-3*4+8=-4#

Nov 28, 2017

See answer and process to follow below;

Explanation:

First, Write the equation..

#-7x - 6y = 4 - - - - - -eqn1#

#x = -3y + 8 - - - - - - - - - eqn2#

First! thing you must note is the minus#(-)# sign attached to the #x#

In other not to be confused, you have to re-arrange the given equation..

First starting from #eqn1#

#-7x - 6y = 4 - - - - - -eqn1#

Rearrange the equation it would be like;

#7x + 6y = -4# (Carrying it to the other side which will change the sign!)

Therefore we have....

#7x + 6y = -4 - - - - - - - - - - - - eqn1#

#x = -3y + 8 - - - - - - - - - - - - - - eqn2#

Using; Substitution Method!

Substitute the value of #x# in #eqn2# into #eqn1#

#7x + 6y = -4 - - - - - - - - - - - - eqn1#

#x = color(blue)(-3y + 8)#

#7(color(blue)(-3y + 8)) + 6y = -4#

#-21y + 56 + 6y = -4#

Simplifying...

#-21y + 6y + 56 = - 4#

#-15y + 56 = -4#

Collect like terms...

#-15y = - 4 - 56#

#-15y = -60#

Divide both sides by #-15#

#(-15y)/(-15) = (-60)/(-15)#

#(cancel(-15y) )/cancel(-15) = (cancel-60)/(cancel-15)#

#y = 60/15#

#y = 4#

Substitute the value of #y# into #eqn2#

#x = -3y + 8 - - - - - - - - - - - - - - eqn2#

#x = -3(4) + 8#

#x = -12 + 8#

#x = -4#

Hence we have; #x = - 4 and y = 4#